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In this paper a stress induction method is examined that can be used to increase the
operational speed range of rotating disks such as industrial circular saws and computer disk
drives. In this method, stresses are generated in the disk by producing displacements or
tractions at the inner radius of the disk that are proportional to the square of the rotation
speed; as might be achieved, for example, by allowing freely sliding, centripetally
accelerating, concentrated masses to rest along the inner radius of the disk. While
traditional stress induction techniques can raise the maximum rotation speed by 30–40%,
the technique proposed here can double the maximum speed for hydrodynamically
uncoupled disks (circular saws and hard disk drives) and can increase the maximum speed
of disks with substantial hydrodynamic coupling (floppy disks) by an order of magnitude.
These increases and the optimal stress induction parameters are studied in detail here.
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1. INTRODUCTION

Thin, high speed rotating disks are the principal mechanical components of industrial
circular saws and computer disk drives. In each of these technologies, thinner disks and
faster rotation are desirable either to increase production or reduce data acquisition times.
However, the useful operational speed range and disk thinness in these devices are usually
limited by a critical speed phenomenon, in which the propagation of a circumferentially
travelling wave is equal and opposite the rotation of the disk [1–6]. Neither industrial saws
nor computer disk drives can tolerate the large transverse deflections that occur near the
critical speed, and, consequently, these devices generally operate at a fraction of the lowest
critical speed [7].

For many decades, the saw industry has induced in-plane residual stresses in saw blades
to counteract the thermal stresses that arise at the periphery of the saw and to increase
the saw’s operational speed range [8, 9]. These residual stresses are normally produced
using a technique called ‘‘roll-tensioning’’, in which a thin, circumferential ring of the disk
is plastically deformed by repeatedly rolling it between two loaded wheels [4, 10–14]. Other
stress induction methods have also been proposed [15–17]. Although potentially beneficial,
residual stresses are generally not induced in computer disk drives because of their
sensitivity to disk integrity and processing.

In this paper a new stress induction method is examined that can be used in both circular
saws and computer disk drives. In this method, stresses are generated in the disk by the
central clamp, which is designed to produce tractions or in-plane displacements at the inner
radius that are proportional to the square of the rotation speed; as might be achieved, for
example, by allowing freely sliding, centripetally accelerating, concentrated massses to rest
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along the inner radius of the disk. This might be possible using a scalloped spline to drive
the disk, since a clamp attached to the spline could prevent transverse motion of the disk
without constraining the radial motion. Alternatively, the drive shaft could be split so that
it flies radially outwards during rotation.

Regulating the induced stress with speed dependent boundary tractions or displacements
has two advantages: first, the technique can be applied without affecting the integrity of
the disk, which would permit its use in computer disk drives; and, second, significantly
higher rotation speeds are possible than produced by other techniques. This occurs because
the induced stresses are generated while the disk is rotating, and the destabilizing effects
of the induced stress can be counteracted by tensile centripetal stress.

In conventional roll-testing, the critical speed can be raised by 30–40% at most before
the residual stresses cause instability [14]: the technique described here can double critical
speed for hard rotating disk such as circular saws and hard disk drives, and can increase
the critical speed in flexible, hydrodynamically coupled, rotating disks such as floppy disk
drives by an order of magnitude. In this paper a detailed analysis is provided of the increase
in critical speed for both hard and flexible rotating disks using the proposed stress
induction technique. Optimal traction and displacement parameters and practical
considerations are also discussed.

2. THE HARD DISK CASE: A DISK DECOUPLED FROM THE SURROUNDING
MEDIUM

A thin, axisymmetric, circular disk clamped at inner radius Ri and free at outer radius
Ro spins about its axis of symmetry at a constant angular speed V*. The disk is of uniform
thickness h, density r (mass per unit volume), Young’s modulus E, and Poisson ratio n.
The polar co-ordinates (R, u) are fixed in the staionary frame of reference, with the centre
of the disk at the origin. The in-plane, radial displacement of the disk is Ur , the transverse
displacement of the disk is W, and the in-plane, axisymmetric stresses s*r and s*u are the
sums of the centrifugal and boundary-induced stresses. Dimensionless variables describing
the disk are defined by

r=R/Ro , w=W/h, V=V*zrhR4
o /D,

ur =UrRo/h2, sr = s*r hR2
o /D, su = s*u hR2

o /D, (1)

where D=Eh3/[12(1− n2)]. The clamping ratio k=Ri/Ro .
In this section we consider hard disks such as industrial circular saws and hard computer

memory drives, the motions of which are nominally decoupled from the motion of the
surrounding medium. The transverse vibration and stability of such disks can be modelled
using clasical Kirchhoff plate theory with in-plane stresses [4, 5, 18]. For that model, the
maximum stable rotation speed VH-max is given by the maximum value of V for which the
functional JH is positive definite [6]:

JH [w]=U[w]− 1
2 g V2w2,u dA. (2)

U is the potential energy of the disk:

U[w]= 1
2 g (92w)2 −2(1− n)[w,rr(w,r/r+w,uu/r2)− [(w,u/r),r]2]+ srw,2r + suw,2u/r2 dA. (3)
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A comma indicates partial differentiation, and dA is the different planar area of the disk.
Admissible functions for JH and U satisfy clamped–free boundary conditions:

w=0 and w,r =0 at r= k, w,rr + n(w,r/r+w,uu/r2)=0 at r=1,

(92w),r +(1− n)(w,ruu/r2 −w,uu/r3)=0 at r=1. (4)

92 is the Laplacian operator.
The clamp of the disk is designed to produce the speed dependent traction at the inner

boundary:

sr =−mV2 at r= k. (5)

The outer edge of the disk is free:

sr =0 at r=1; (6)

m is a constant that could represent the total dimensionless added mass, assumed to be
concentrated in a line around the inner radius r= k, although the traction could be
produced in some other manner such as electromagnetically. This mass would produce the
specified traction. m=0 represents an annular disk with no traction at r= k which is often
used to model rotating disk systems [19]. The axisymmetric solutions of the generalized
plane stress equations of linear elasticity with a centripetal body force and single valued
displacements that satisfy equations (5) and (6) are

sr =V2[c1/r2 + c2 + c3r2], su =V2[−c1/r2 + c2 + c4r2], (7)

where

c1 =−(3+ n)k2/8−mk2/(1− k2), c2 = (1+ k2)(3+ n)/8+mk2/(1− k2),

c3 =−(3+ n)/8, c4 =−(1+3n)/8.

Since JH is separable in u, VH-max can be determined numerically by solving the symmetric
eigenvalue problem for V, defining the extrema of JH for n=0, 1, 2, . . . using the
substitution w= u(r) cos (nu). In Figure 1 are shown plots of VH-max and the number of
nodal diameters, n, in the non-definite eigenfunction as a function of k for m=0, 1 and
2. These values were determined using the Galerkin method with six orthonormal,
Chebyshev polynomials defining u(r). As few as three polynomials were sufficient to give
convergence within 1% of the reported values [6]. The search was carried out from n=0
to n=10. The results show that VH-max can be approximately doubled from its value when
m=0 by an appropriate choice of m. For k=0·35, increasing m from 0 to 1 increases
VH-max from 7·21 to 14·5, an increase of 101%. For k=0·24, increasing m from 0 to 2
increases VH-max from 5·91 to 10·6, an increase of 79%. When m=0, the non-definite
eigenfunction has two or more nodal diameters [20], but the peak increase in VH-max occurs
at the transition between a non-definite eigenfunction with non-zero nodal diameters and
one with zero nodal diameters. This causes the cusp-like behavior to the curves, since each
side of the peak is determined by a different eigensolution.

In Figure 2 are shown plots of mopt , the value of m that maximizes VH-max , and the
corresponding value of VH-max as a function of k. Also shown is the allowable variation
in mopt for which VH-max remains within 90% of its maximum value. The results verify that
VH-max can be approximately doubled for all values of k with an appropriate choice of m.
Furthermore, a 10% variation in m from its optimal value produces about a 10% decrease
in VH-max .
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For most current hard disk designs, mopt is relatively large. Consider the industrial
circular saw studied by D’Angelo and Mote [19], for which Ro =0·178 m,
Ri =0·0534 m, h=0·775 mm and r=7700 kg/m3. The total mass of the disk is 0·54 kg.
For k=0·3, mopt =1·35, giving VH-max =12·6, an increase of 90% over m=0. The total
mass required at the inner edge of the disk, 2pmrhR2

o , is 1·6 kg, or three times the mass
of the disk. Similarly, for a 5 inch disk in a hard disk drive, Ro =65 mm,
Ri =19·5 mm, h=1·3 mm and r=2800 kg/m3 [6]. In this case, the total mass of the
disk is 44 g, while the total mass required at the inner edge is 130 g. In Figure 3 is
shown the mass ratio, 2 mopt/(1− k2), the ratio of the total clamping mass required to
optimally increase VH-max to the total mass of the disk, as a function of k. As k

increases, this ratio decreases monotonically to values that are more easily achieved in
practice. For example, if k is increased to 0·5, then mopt =0·42. The mass of the
equivalent circular saw then becomes 0·45 kg, while the clamping mass is only
0·50 kg.

3. THE FLOPPY DISK CASE: A DISK COUPLED TO THE SURROUNDING MEDIUM

In this section we consider flexible spinning disks such as computer floppy disks, the
motions of which are strongly coupled to the motion of the surrounding medium. We
restrict ourselves to the case in which the disk is enclosed in a housing similar to that of
a floppy disk, which is sealed to prevent radial flow at the outer edge of the disk and the
clearance of which is sufficiently small to justifiy modelling the air flow using
hydrodynamic lubrication theory. The hydrodynamic coupling in a floppy disk is essential
to its design, and the floppy disk would not function properly in its absence [6, 21]. The

Figure 1. (a) The hard disk critical speed, VH-max , and (b) the number of nodal diameters in the critical
eigensolution, n, as functions of the clamping ratio, k, for m=0, 1 and 2.
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Figure 2. (a) The optimal value of m, mopt , and (b) the resulting hard disk critical speed, VH-max , as functions
of k. In (a) the dashed lines indicate the variation in m that produces 90% of the optimal increase in rotation
speed. In (b): ——, m=mopt ; ---, m=0.

stability of hydrodynamically coupled rotating disks is also fundamentally different from
that of hard disks [6].

For this model, the maximum stable rotation speed VF-max is the maximum value of V

for which the functional JF is positive definite [6]:

JF [w]=U[w]− 1
2 g {V2w2

,u/4} dA. (9)

Admissible w still satisfy equation (4).
Because of the increased flexibility of the disk, the traction boundary condition of the

previous section, equation (5), is modified to the mathematically equivalent but physically
more relevant speed dependent displacement boundary condition

ur =dV2 at r= k. (10)

Figure 3. The ratio of the total clamping mass to optimally increase VH-max to the total disk mass as a function
of k.
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Figure 4. (a) The floppy disk critical speed, VF-max , and (b) the number of nodal diameters in the critical
eigensolution, n, as functions of the clamping ratio, k, for d=0, 0·005, 0·01 and 0·015.

The stress field is still given by equation (7) and the radial displacement is

ur =
V2

12(1− n2)
[−c1(1+ n)/r+ c2(1− n)r−(1− n2)r3/8]. (11)

The constants c1 and c2 are given by

c1 =
k2(1− n)[3+ n−(1+ n)k2]

8[1+ n+(1− n)k2]
−

12dk(1− n2)
[1+ n+(1− n)k2]

,

c2 =
(1+ n)[3+ n+(1− n)k4]

8[1+ n+(1− n)k2]
+

12dk(1− n2)
[1+ n+(1− n)k2]

; (12)

c3 and c4 are the same as in equation (8).
In Figure 4 are shown plots of VF-max and the number of nodal diameters, n, in the

non-definite eigenfunction as a function of k for d=0, 0·005, 0·01 and 0·015. The
numerical procedure used was identical to that of the previous section, except that 13 radial
polynomials were used instead of six, and the search was carried out from n=0 to n=40.
Ten polynomials were required to give convergence within 1% of the values reported here.
In Figure 5 is shown the same data as Figure 4 for d=0·02, but with substantially different
scales. In Figure 5, the search was carried out from n=0 to n=150, using 17 radial
polynomials in order to preserve the accuracy of the solution. Because of the
hydrodynamic coupling, the floppy disk base case with d=0 has critical speeds that are
approximately two orders of magnitude greater than the uncoupled, hard disk base case
with m=0. Small increases in d can raise the hydrodynamically coupled critical speed
substantially above the already elevated d=0 levels, and it appears from Figure 5 that
order of magnitude increases are possible with a proper choice of d.
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These numerical solutions require a large number of trial functions to converge, and
many of these solutions have a large number of nodal diameters. Eigensolutions with large
numbers of nodal diameters are common in floppy disk analyses because of the
mathematical structure of the model [21]. Floppy disks can also undergo large transverse
deflections which require non-linear modelling and could limit the usefulness of these linear
results [22].

The increase shown in Figures 4 and 5 correspond to in-plane radial displacements at
the clamp on the order of the disk thickness. For example, consider a typical floppy disk
with h=0·05 mm and Ro =42·5 mm. The ratio of the in-plane displacement at the clamp
over the thickness is Ur/h= dV2h/Ro . For k=0·31 and d=0·005, 0·01 and 0·015,
VF-max =69·8, 106, 178 and 383. The corresponding displacement ratios are Ur/h=0, 0·066,
0·37 and 2·6.

4. PRACTICAL CONSIDERATIONS

The traction and displacement boundary conditions (5) and (10) are formally equivalent
with

m=
(1− k2)[48d(1− n2)− (3+3n+ n2)k+(1+ n)k3]

4k[1+ n+(1− n)k2]
, (13)

Hence the results in Figures 4 and 5 can be directly translated into values of m instead
of d and vice versa. For example, m=0, n=0·3 and k=0·3 corresponds to d=0·025.
Hence a floppy disk with traction-free inner boundary conditions has a critical speed over
four orders of magnitude higher than the same rotating disk in the absence of
hydrodynamic coupling and two orders of magnitude higher than the same rotating disk
with hydrodynamic coupling but vanishing in-plane displacements. There is a significant
advantage to designing floppy disks with in-plane flexibility at the central clamp. It may

Figure 5. (a) The floppy disk critical speed, VF-max , and (b) the number of nodal diameters in the critical
eigensolution, n, as functions of clamping ratio, k, for d=0·02. Note the change in scale from Figure 4.
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also be advantageous to apply additional radial tractions to floppy disk inner radii to
increase d and achieve further increase in the maximum speed.

The dual traction and displacement formulations are presented here to underscore the
physical differences in the two types of clamping. In practice, all clamps involve a
combination of traction and displacement control involving stiction and transverse
clamping pressure which is impossible to predict a priori, and which can be a non-linear
function of the disk rotation history [19]. These difficulties hinder the design of the
proposed stress induction clamp for a specific value of m or d. However, although
boundary conditions proportional to V2 may be achieved using rotating mass, the primary
motivation for choosing these particular boundary conditions instead of any other speed
dependent function was numerical convenience: for the choice of V2, the maximum
rotation speed is the solution of a symmetric eigenvalue problem. In practice, any choice
of speed dependent boundary conditions that generated low levels of stress in the
stationary or slowly rotating disk and high levels of stress in the high speed rotating disk
would produce similar results, since the centripetal stresses could still counteract the
destabilizing effects of the induced stress. A closed loop control system that varied the
magnitude of in-plane force or displacement as a function of the disk vibration and
rotation speed could also be used [16]. Such a control system could generate conditions
corresponding to optimal values of m or d without having to predict the in-plane stiction,
the transverse clamping force or the actual speed dependence.

Although inappropriate for computer disk drives, saw blades frequently have radial slots
cut into the periphery of the blade [23]. These slots reduce the compressive, thermally
induced, hoop stress that occurs along the periphery during the cutting process. In the
absence of these slots, the compressive stresses can lower the maximum rotation speed.
Most stress-induction techniques for raising critical speed, including the one proposed
here, rely on the generation of tensile hoop stress in the periphery of the disk. Slots and
other disk modifications [17, 24] that limit the tensile hoop stress generated at the periphery
of the disk may be counter-productive when used with stress induction methods.

5. CONCLUSIONS

A novel stress induction method is proposed for increasing the operational speed range
of rotating disks such as industrial circular saws and computer disk drives. The method
involves producing a traction or displacement at the inner radius of the disk that is
proportional to the square of the rotation speed. While traditional stress induction
methods can increase the maximum speed of rotational disks by 30–40%, the method
described here can double the maximum speed for disks with little hydrodynamic coupling,
and can increase the maximum speed of hydrodynamically coupled disks by an order of
magnitude.
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